exln(1+x)(1+x)α1−x11+x1sinxarcsinxcosx1+xtanxarctanx=1+x+2!x2+3!x3+o(x3)=x−2x2+3x3+o(x3)=1+αx+2!α(α−1)x2+3!α(α−1)(α−2)x3+o(x3)=1+x+x2+x3+o(x3)=1−x+x2−x3+o(x3)=x−3!x3+5!x5+o(x5)=x+21×3x3+2×41×3×5x5+2×4×61×3×5×7x7+o(x7)=1−2!x2+4!x4+o(x4)=1+2x−8x2+16x3+o(x3)=x+3x3+152x5+o(x5)=x−3x3+5x5+o(x5)