设函数 是以 为周期,在 上定义的函数
展开式为
其中
做变量代换 即可,则有 ,套用前面的结论做变量代换即得出结论
例题 把 展开成傅立叶级数
令
把 做周期延拓,然后展开为正弦级数
换回来就是了
P级数 P 取 2 的时候和函数的构造方法是绝对值函数傅里叶展开
偶数项的和等于 的所有项,用方程可以得出
2024年5月27日1分钟阅读
设函数 f(x) 是以 2l 为周期,在 [−l,l] 上定义的函数
展开式为
f(x)=2a0+n=1∑∞(ancoslnπx+bnsinlnπx)其中
an=l1∫−llf(x)coslnπxdx bn=l1∫−llf(x)sinlnπxdx做变量代换 z=lπx 即可,则有 F(z)=f(x)=f(πlz)=f(πl(z+2π))=f(x+2l)=F(z+2π),套用前面的结论做变量代换即得出结论
例题 把 f(x)=10−x (5<x<15) 展开成傅立叶级数
令 x0=215−5=5
t=x−x0⟹{z∈[−5,5]f(x)=f(z+10)=−z=F(z)把 F(z) 做周期延拓,然后展开为正弦级数
{an=0bn=52∫05−zsin5nπzdz=(−1)nnπ10 10−x=F(z)=π10n=1∑∞n(−1)nsin5nπz换回来就是了
P级数 P 取 2 的时候和函数的构造方法是绝对值函数傅里叶展开
偶数项的和等于 41 的所有项,用方程可以得出